Welcome to my Robin Blog.

It was suggested to me that I start a Blog on my ultralight project the "Robin". I have been working on this project for 4 years. On one of my first days at Vought aircraft, a stress man and future friend named Kenny Andersen walked up to me and said, "Aren't you the Mark Calder that designed the Wren Ultralight" Why yes I am I said. "well what have you done lately?" That was the genesis of the Robin design. The first 2.5 have been spent in the design phase. Actual construction started 1.5 years ago and has actually progressed smoothly. There have been a number of changes from the onset, but for the most part it is following my original concept. I will eventually sell plans for the Robin and make available all molded parts, fittings and welded assemblies. The Robin is designed to FAA part 103 and as such requires no pilots license to fly, although I think its a good idea to actually learn how to fly!! The actual name "Robin" was my Daughter Jamie's idea, I asked her to name the design based on my "cute little bird" theme (Wren)



Every good aircraft design has a "Mission" in mind before the actual design is started. A good designer will refer back to this mission every time a design decision must be made. Good design after all is just a series of good design decisions. On my first Ultralight design the Wren, the mission was to design a high performance low powered aircraft. The reduction of drag was the prime concern. I had been flying powered Hang gliders prior to this and because of this experience, I placed a high priority on climb performance. While most designers chose bigger engines, I chose lower drag and high aspect ratio (low span loading) wings. The Wren could out climb conventional Ultralight with up to 65 hp. The Robin follows this philosophy, but tries to improve on the performance of the Wren. Ultralight are not built by "rich" people, they offer an inexpensive means to enjoy one of the greatest experiences of my life, low speed soaring and flying.



Design Concept



The cost of an aircraft is directly proportional to its weight. , if low drag can be achieved then lighter and cheaper engines can be used. The Robin expands on the design mission of the Wren by using a longer span (40') wing and using a low speed laminar flow airfoil, (Wortmann FX 170) The leading edge of the wing on the prototype is molded fiber glass. The spar has been placed at 33% of the wing chord because the chosen airfoil is laminar over the first 32%. The aft covering is light weight Dacron Fabric. The leading edge of this fabric is purposely pinked and placed at the 32% chord point to facilitate laminar transition and elimination of separation bubbles. The main difference between the original design of the Robin and the current final design is the elimination of the single mono wheel retractable landing gear. Part 103 does not allow for a retractable landing gear. Which is really unfortunate because I spent a long time designing a really neat mechanism!!

In the course of the 4 years I have worked on the Robin, the structural design concept has evolved radically. Originally I was going to draw on the design of the Wren and use essential the same construction concepts. The original design of the Wren was heavily influenced by my Friend Steve Wood's Sky Pup design. I lived in Wichita Kansas and worked at Cessna Aircraft along with Steve. I watched his progress on the Pup and was very impressed with his concepts. I adapted the concept of using Styrofoam sheeting as the shear panels for the fuselage and the wing ribs. I did not however use the foam for the shear webs of the wing as Steve did. I originally wanted to build the fuselage of the Robin in a similar manner. Weight and the desire to not use foam for the basic structure due to the danger of fuel leaking eventually drove me to a all wood fuselage design. The wings were designed to take advantage of the Graphlite carbon pultruded material pioneered for the experimental aircraft by Jim Marske. I was familiar with this product from my experience at Bell Helicopter where it was considered in the construction of the V-22 wing.









Canopy quick release and disconnect plug

I finished fabrication and installation of the canopy quick disconnect hinge. I started modification of the fwd turtle deck to accept a square cut out for the disconnect plug. The socket side of the disconnect cable is designed to snap into a square cutout. I decided to modify the fwd turtle deck rear bulkhead to remove the core and close out the the area of the plug. The close out has a thick build up of fiberglass doublers to make up the required thickness of the disconnect plug.
Quick disconnect hinge showing the 3/8" spring pin
This is a picture of the final installation of the quick disconnect hinge. The pin had to be split and spliced so it could be installed.















Rear view of release pin
This is a view of the release pin. I drilled and then reamed this hole to allow exactly .002" clearance. The pin removes with 7 lbs of force with no lift load. The square cutout in the canopy is the location where the disconnect cable will be located. a strain relief will be added to the cable and attached to the emergency lanyard so that it is removed the cable will automatically be disconnected








core foam removed and edges beveled.
This is the start of the bulkhead reinforcement. The core was split using the Multi- tool and then cleaned out using the same tool. The exposed foan was then bevel sanded and the exposed fiberglass was cleaned up with 100 grit sand paper. I put a piece of tape on the opposite side to cover the old hole.









close out with glass doublers
After the glass thoroughly cures I will lay out the rectangle opening for the cable plug.

Next job is the canopy patch and the emergency release handle.


The next job will be the last before covering, I need to rig thew aileron cables and set the disconnects,

No comments: