Pages

Brake pedal installation

I'm sorry I'm so late in updating the blog. I have been very busy!! 6 months ago I agreed to take on a side job for a Gulfstream G3 Engine swap. I am designing a new engine installation for the Right side pylon. This plane will be a flying test bed for the manufacturer of the new engine. I have a hard deadline for complete release of the engineering drawing of Feb 9. Consequently I am slammed for time and the Robin has to take a back seat. That's the bad news, the good news is I have earned enough money to purchase a 4 x 8 x 19" 5 axis N/C router!!!! I am expecting delivery to Houston Texas in May. I can't tell you how excited I am to get this tool. Not only will it allow me to make an exquisite wood kit for the Robin, but it will also make possible my next project. I am going to design and build an all wood laminar flow single place high speed airplane powered by an industrial Suburu 40 hp engine. Speaking of industrial engines, I recieved my replacement engine for the MZ 34 I currently have on the Robin.

23 hp Vanguard Engine

When I get back on the project I will swap this engine for the MZ 34. Stripped down and using a forged billet flywheel this engine will weigh 64 lbs. That will put the prototype over the part 103 254 weight limit. However I anticipate that changes to the wing and landing gear will bring her back under 254 lbs. More on those changes later. I plan on mounting the prop on the flywheel directly. Research has shown that a direct drive should yeild 154 lbs of static thrust. By Mounting the prop on the flywheel side the airflow thru the cowl will be in the same direction as the engines design. I will also be able to mount the engine using the PTO mounting fasteners.

I have finished the new replacement landing gear installation. I fabricated a cover plate that can be removed to service the gear. 
new gear cover plate
 landing gear center cover.

The part 103 Robin will go back toi the original Fournier mono wheel. If a direct drive installation works, the prop clearance issues are such that I could use a non retractable gear. Saving even mode weight.









The existing rudder pedals were removed and modified to add toe brakes. This installation is very clean. Here are some pictures of the installation:
toe brakes

toe brake pedals were added to the existing rudder pedals, The toes brake position is adjustable. I will set the position after I get a chance to sit in the cockpit. The brakes are cble actuated and are modified Go Cart drum brakes.










break cable routing
there is enough relief loop in the brake cables to allow full rudder pedal adjustment.















rudder return pulley

I decided to update the Blog this evening because I received a question from a reader about the rudder return cable design. The main change I would make to this design is to raise the cable attach points to the end of the rudder pedals. This still works pretty good. I like this a lot better than the spring return I used to have. You will notice that the pulley bracket can swivel horizontally. The  fwd pivot hole is oversize and allows the pulley bracket to also rotate up and down. The threaded rod is also the cable tensioner.




 This is a better picture of the return mechanism.














Finally in December it was my privilege  to meet a blog reader from Sweden Dr Jörgen Åstrand. He is Fournier RF4 and Piper Cub Owner and possible a future neighbor here in Texas. It was sure nice meeting up here in Texas. Ironically he was also a reader of my Friend Ed Piper Cub Blog. Only at the last minute die we all realize that he was coming see us both during his vacation.

 Dr Jörgen Åstrand and myself.




















KJHKHKJHiu