Pages

New Landing gear cont.

I have finished the gear fitting installation to the fuselage. The first step was to locate the fittings using the gear as a guide. I loosely bolted the gear to the fittings and then located the fittings to the fuselage. Once located I back drilled the through fitting through the fuselage bearing blocks. I made a makeshift drill jig by drilling a 1/4" hole through a 2.5" thick block of aluminum. It was very critical to drill these holes perpendicular to the outer flange so the holes would line up with the inside flange. Normally the inside flange would be left un drilled or undersize so the final hole would open up both flanges. I was betting that I could drill a hole accurately enough so the drill would align with the inside flange.
homemade drill guide
I used to work in Wichita at Boeing Commercial aircraft, they had the most wonderful surplus yard I have ever seen. I bought a ton of forged aluminum block and plate stock. This is just a small little piece. There are commercial drill jigs, most notably the "Egg Cup " design. all of these will work, but I didnt have a 1/4" drill bushing for my Egg Cup. 


After the 1/4" holes were drilled, I chased then through with a 1/2" twist drill. Opening the holes up to just slightly under 1/4" (-.003) I then fabricated eight 1/2" diameter aluminum bushings. The 1/2" aluminum stock is slightly larger than 1/2" (+.002) this makes for a nice tight transition fit between the wood and the bushings. I sanded the outside of the bushings and then cleaned them with MEK.
cleaned bushing and epoxy adhesive
once cleaned, I coated the bushings with epoxy adhesive and tapped them into place. The bushings were made with the center hole undersize (.223") so that on final assembly they will be opened up again to .250" The adhesive is used to stop the bushing from rotating when it is drilled out.










installed bushings
the bolt loads are such that they needed to bear into the wood with greater area, this is the reason there are 1/2" diameter bushings.




The landing gear fitting is square and parallel to the landing gear. The fuselage has a slight amount of contour . The load path from the gear to the fuselage is through a mechanism called "Heel and Toe" The design condition is a 1G breaking load applied to the tangent edge of the tires. This creates a large moment that needs to be reacted by the two outer bolts on the gear fitting. Since the fitting is wider than the bolt pattern, the reaction will actually  be between the edge of the fitting (heel) and the opposite bolt (Toe) . Therefore the gap between the fitting and the fuselage must be filled with a material capable of withstanding compressive forces. The fitting is "Bedded" with a mixture of epoxy and cotton fiber (Flox) . Flox is mixed to a consistency of dough. I spread it under the footprint of the fitting and then installed the fitting. The inside of the gear fitting was coated with mold release wax so the fitting could eventually be released if needed.

flox bedding

once the fitting is installed, the excess bedding is scraped away.

When I installed the gear for a trial fit I saw that the clamp block was deflecting and bridging over the gear. To fix this I designed 4 more bushing that were exactly .003" taller than the thickness of the gear. They would crush to equal the gear thickness after installation






clamp bushings
after the clamp up bushings were installed, the bridging stopped and a more even clamp pressure was developed.




























fghdfh

No comments:

Post a Comment